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We investigate the changes to a fully developed turbulent boundary layer caused by the 
presence of a two-dimensional moving wave of wavelength L = 2n/k and amplitude a. 
Attention is focused on small slopes, uk, and small wave speeds, c, so that the linear 
perturbations are calculated as asymptotic sequences in the limit (u* + c)/U,(L) + 0 (u* 
is the unperturbed friction velocity and U,(L) is the approach-flow mean velocity at 
height L). The perturbations can then be described by an extension of the four-layer 
asymptotic structure developed by Hunt, Leibovich & Richards (1988) to calculate the 
changes to a boundary layer passing over a low hill. 

When (u* + c)/U,(L) is small, the matched height, z, (the height where U ,  equals 
c), lies within an inner surface layer, where the perturbation Reynolds shear stress 
varies only slowly. Solutions across the matched height are then constructed by 
considering an equation for the shear stress. The importance of the shear-stress 
perturbation at the matched height implies that the inviscid theory of Miles (1 957) is 
inappropriate in this parameter range. The perturbations above the inner surface layer 
are not directly influenced by the matched height and the region of reversed flow below 
z,: they are similar to the perturbations due to a static undulation, but the ‘effective 
roughness length’ that determines the shape of the unperturbed velocity profile is 
modified to z, = z,, exp (KC/U* ) .  

The solutions for the perturbations to the boundary layer are used to calculate the 
growth rate of waves, which is determined at leading order by the asymmetric pressure 
perturbation induced by the thickening of the perturbed boundary layer on the leeside 
of the wave crest. At first order in (u* + c)/U,(L), however, there are three new effects 
which, numerically, contribute significantly to the growth rate, namely : the 
asymmetries in both the normal and shear Reynolds stresses associated with the leeside 
thickening of the boundary layer, and asymmetric perturbations induced by the 
varying surface velocity associated with the fluid motion in the wave; further 
asymmetries induced by the variation in the surface roughness along the wave may also 
be important. 

1. Introduction 
We investigate how a deep turbulent boundary layer changes as it passes over a fluid 

of much greater density when the interface is distorted by a two-dimensional moving 
wave. Such flows commonly occur both naturally and in engineering. The application 
of particular interest here is to the wind blowing over the sea, which causes surface 
waves to be amplified. 

In the past 35 years there have been many studies of this problem, often focusing on 
quantifying the consequential growth rate of the waves. The previous theoretical 
studies (which include Jeffreys 1925; Miles 1957; Phillips 1957; Townsend 1972, 1980; 
Jacobs 1987; van Duin & Janssen 1992) have attributed the growth rate to different, 
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FIGURE 1. Flow geometry and asymptotic structure. 

single mechanisms. To date, however, there is no general theory to explain and 
determine the relative importance of the different processes that control the growth 
rate over the whole significant ranges of wind and interface wave speeds. 

Our approach, which follows most of the previous studies, is to prescribe the 
interface shape and flow in the water (discussed in 52.1) and then calculate the linear 
changes to the air flow. As described in 52.2, in the frame of reference that moves with 
phase speed, c, of the wave crests, the interface shape changes only slowly. For a linear 
analysis of small changes to the flow, it is shown in 42.3 that the air-flow perturbations 
can be decoupled into the two independent problems of determining the perturbations 
caused by the undulating interface shape and the perturbations induced by the 
variations along the wave of the surface velocity and roughness. 

For slowly moving waves, such that E = (u* + c ) /U ,  4 1 (where u* is the unperturbed 
friction velocity and U, is a scale for the unperturbed velocity), both perturbation 
problems are, as described in 53, analysed using a modified version of the asymptotic 
theory developed by Hunt, Leibovich & Richards (1988, hereafter referred to as HLR) 
to describe the changes to a turbulent boundary layer passing over a low hill. Their 
method derives from the theory of laminar flow over humps (Smith et al. 1981) and 
Townsend's (1965) theory of perturbed turbulent boundary layers. The similarities and 
differences between the perturbations induced by a moving wave and a fixed hill are 
discussed in $4. 

If k is the wavenumber of the dominant wave, the limit of e-+ 0 is equivalent to 
kz,+oo with c/u* = O(1) (see 53.4), which are the same conditions assumed in the 
asymptotic analyses of van Duin & Janssen (1992) and Jacobs (1987). Although the 
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FIGURE 2. Miles’ (or critical layer) mechanism of wave growth. A kinematic consequence of the 
varying pressure perturbation is that, near the matched height, there is a region of recirculating flow, 
for which Kelvin coined the term ‘cat’s eyes’. 

present analysis has elements in common with these latter studies, it differs in 
significant ways and our expression for the growth rate has a different magnitude. We 
have used the analogy with the flow over low hills to understand some aspects of wind 
waves. The analogy is particularly useful in modelling the changes to the Reynolds 
stresses, which are well understood in the flow over hills (Sykes 1980; Zeman & Jenssen 
1987; Belcher, Newley & Hunt 1993, hereafter referred to as BNH). In particular, BNH 
have shown that, within the HLR framework, the mixing -length model is appropriate 
provided it is truncated in the outer region (see $3.1). BNH use this truncated mixing- 
length model to calculate an analytic formula for the drag on the surface (an integrated 
effect of the hill), which is in good agreement with results computed using a second- 
order closure model for the turbulent stresses and with laboratory experiments. 

We use the truncated mixing-length model in this study and, in $5,  develop an 
analytical expression for the leading-order energy flux to the wave motions and thence 
the growth rate of the wave. The magnitudes of the next-order contributions to the 
energy flux from the various mechanisms are estimated using the results of the analytic 
model in $7. Since the energy flux is an integrated effect of the wave, we expect that the 
results will be in good agreement with measurements. 

1.1. Classifkation of the wave growth mechanisms 
Various mechanisms have been suggested to explain the energy flux from the wind to 
the waves and hence the amplitude growth rate (refer to figures 1 and 2-8). We focus 
on the mechanisms that lead to an exponential growth of the waves and propose that 
these mechanisms be classified as follows. 

The perturbations induced by the presence of the undulating wave surface lead to: 

M .  The Miles (or critical layer) mechanism (jigure 2) 
Miles (1 957) analysed a quasi-inviscid version of the problem : in this model, the role 

of the Reynolds stresses is confined to the determination of the unperturbed mean 
velocity profile. For air flowing cocurrently with the waves, there is a height, the critical 
height, where the unperturbed wind speed equals the wave phase speed. (In the present 
study, where the effects of the turbulent stresses on the mean motion are considered, 
following Phillips 1977 we use the term ‘matched height’). The upward motion of the 
air flow over the wave induces a sinusoidal pressure variation which leads to a vortex 
sheet of periodically varying strength forming at the critical height. Then the ‘vortex 
force’ (Lighthill 1962) on the wave leads to a transfer of energy from the wind to the 
waves. Note that according to this mechanism, the amplitude grows only if the wave 
is moving, i.e. for a fixed undulation (where the critical layer is at the wave surface) 
there is no asymmetric pressure and hence no wave growth. 
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Outer region 

FIGURE 3. Non-separated sheltering growth mechanism. The perturbed boundary layer thickens on 
the leeside of the crest due to the action of the shear stress in the inner region, thereby leading to a 
pressure asymmetry in the outer region. (Streamlines above the matched height only are shown.) 

FIGURE 4. Inner-region Reynolds-stress effects on wave growth. Towards the surface the turbulence 
tends to a local equilibrium structure, so that the Reynolds-stress perturbations are determined by the 
local velocity gradient. The asymmetry in the inner region leads to perturbations to the Reynolds 
stresses that are out of phase and hence the Reynolds normal stresses are out of phase at the surface. 
This also contributes to the energy flux to the wave motion. 

NSS. Non-separated sheltering (figure 3) 
The action of the Reynolds stresses close to the surface, in the inner region, cause a 

thickening of the boundary layer on the leeside of wave and thence to mean flow 
separation when the slope is large enough. The thickness of the inner region is therefore 
asymmetric and so the, largely inviscid, outer region flow is asymmetrically displaced 
about the wave, leading to an out-of-phase component to the pressure perturbation. 
This mechanism is related to Jeffreys' (1925) sheltering hypothesis, which was 
developed for separated flows over moving waves of large slope to account for their 
growth. 

IRS. Inner-region Reynolds stress eflects Mgure 4) 
Within the inner region, as the surface is approached, the turbulence tends to a local 

equilibrium so that it adjusts to the local velocity gradient. The asymmetry of the mean 
flow, and hence the mean flow gradients, in the perturbed boundary layer therefore 
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FIGURE 5.Outer-region Reynolds-stress effects on wave growth. The 'non-separated sheltering' in the 
inner region leads to a change, A/, in the displacement of the largely inviscid outer-region flow. 
Consequently, the (rapid) distortion of the Reynolds stresses in the outer region is displaced 
downwind of the crest, thereby contributing to the energy flux. 

lead to asymmetrical perturbations in both the normal and shear Reynolds stresses. 
These asymmetrical perturbations to the Reynolds stresses at the surface also lead to 
an amplification of the wave (Townsend 1972, 1980). Stewart (1967) and Longuet- 
Higgins (1969) have discussed this mechanism for the transfer of energy into the wave 
motion, but they did not study the effect as part of a systematic analysis. 

ORS. Outer-region Reynolh stress effects cligure 5)  
The larger eddies in the outer region are bigger than those at lower levels (because 

of the blocking effect of the surface) and therefore have a longer timescale. 
Consequently, the distortion to the eddies in this region is determined by the history 
of the strain by the mean flow, so may be calculated using rapid-distortion theory. 
Furthermore, the flow in the outer region is displaced slightly downwind of the wave 
crest by the non-separated sheltering, so that the distortion of the turbulence in the 
outer region is slightly out of phase with the wave surface. This leads to surface 
pressure and Reynolds stress perturbations that further induce a growth of the wave. 
This mechanism was first suggested by the work of Sykes (1980), in a related study of 
the drag force on a static undulation. The main effect of the curvature of the mean 
streamlines on the turbulence is also through the rapid-distortion mechanism (Zeman 
& Jenssen 1987; Belcher 1990), so that this contributes to the wave growth at the same 
order as the other outer-region Reynolds stress effects. 

FAD. Eflects of jinite-amplitude distortion (jigure 6) 
At higher values of the wave slope, ak, it may also be significant to consider the 

asymmetry in the Reynolds stresses produced by a finite-amplitude distortion to the 
flow. There is a nonlinear drift, of O((ak)2), of fluid elements and hence the rapid 
distortion of the turbulence in the outer region is out of phase with the surface (Hunt 
1973; Townsend 1980). 

The wind over the wave is also affected by the variations in the properties of the 
water surface and these changes also contribute to the wave growth: 
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FIGURE 6. Finite-amplitude-distortion effects on wave growth. For larger slopes the distortion (and 
travel time or drift, AT)  of the eddies is different along adjacent streamlines and so the distortion is 
not exactly in phase with the mean streamlines. 
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FIGURE 7. Orbital velocity effects on wave growth. The motion of the water at the wave surface 
generates further perturbations to the air flow. The streamlines of the perturbed flow are sketched. 
These motions lead to  an asymmetric surface-pressure perturbation. 

S l .  Orbital velocity effects (jigure 7) 

The motion of the water leads to a varying velocity at the surface of the wave which 
generates perturbations in the boundary layer above. These perturbations also have 
asymmetric parts which contribute to the energy flux to the wave motion and thence 
to a growth of the wave. 
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FIGURE 8. Variable-roughness-length effects on wave growth. The perturbations to the air flow caused 
by the undulating wave shape lead to a varying shear stress along the surface of the wave surface, and 
thence to a variation in the surface roughness. This leads to further perturbations to the air flow, 
whose streamlines are sketched, and a further contribution to the asymmetric surface pressure 
perturbation. 

S2. Variable roughness eflects (jigure 8) 
The change of wind speed over the wave induces a variation in the shear stress, 7*,  

along the surface and therefore a growth along the wave of small ripples. It is assumed 
that the wavelength, L, of the dominant wave is much greater than the wavelength of 
the ripples, A, which is of order (7*/pag), so that A + L. The effect of these ripples 
on the air flow is equivalent to a variation along the wave in the roughness length, 
zo - A - 7*/pag,  which varies because 7* varies. The variation of zo induces further 
perturbations to the flow which also affect the growth of the wave. A non-uniform 
roughness length was first included in the numerical calculation of Gent & Taylor 
(1976). 

2. The physical model 
The flow domain is composed of two fluids : in z < 0 is a fluid (e.g. water) of density 

pw, which is thought of initially as being at rest; and the region z > 0 contains a fluid 
(e.g. air) of much lower density, pa, which flows as a fully developed turbulent 
boundary layer in the positive x-direction. We investigate how the boundary layer 
changes when the interface between the fluids is disturbed by a two-dimensional 
travelling wave of amplitude a and characteristic wavenumber k. Physically, this 
models a snapshot of the development of a wave that is in active growth. Alternatively, 
it may be thought of as modelling the experiments on wind-ruffled mechanically 
generated waves (e.g. Hsu, Hsu & Street 1981). 

2.1. Flow in the water and integace conditions 
In the present study, the primary aim is to calculate the linear perturbations to the air 
flow caused by the interface wave. To specify this problem completely, the motion in 
the water is prescribed to provide boundary conditions on the wind velocity at the wave 
surface. 
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To analyse the air flow over a general wave train requires a decomposition into basic 
wave elements. The wave train is composed of wave packets that, in the absence of the 
wind, have fixed shape (at least on timescales much larger than the wave period), e.g. 
the Stokes wave form (see e.g. Kinsman 1984). Each of these wave packets is then 
analysed separately: the linear solution that we calculate for air flow over one wave 
packet may be superposed to obtain the solution over a general wave train. For a 
particular wave packet, the analysis is performed in a frame of reference that moves at 
the phase speed, c, of the wave packet. The shape of the wave packet is then steady 
(subject to the constraints mentioned above). Since only the linear perturbations to the 
air flow are calculated, it is sufficient to analyse the flow over a single Fourier mode. 
So, without loss of generality, the surface is described by 

(2.1) 

it is understood that the real part only is considered. The flow over the complete wave 
packet is obtained by Fourier superposition. In the particular case of a Stokes wave, 
the higher harmonics are of O((ak)'). Our analysis of the linear perturbations to the air 
neglects terms in the governing equations that are of O((ak)'), so that, although the air- 
flow perturbations induced by the higher harmonics of a Stokes-wave shape can be 
calculated within the present framework, for consistency, the dominant Fourier 
component only is considered. 

In the frame that moves with the crest of the wave packet, the interface shape is, by 
construction, steady in the absence of the wind. Hence the interface is a streamline. The 
kinematic boundary condition at the surface is w* = -caq/ax so that the velocity at 
the surface, (u*, w*), is given by 

9 = a eikz ; 

u* = -c+ 3 eikz, w* = -akci eikz at z = q, (2.2) 
where P is a real amplitude. (Superscript * denotes a dimensional velocity.) 

In the present study, when a specific form of the motion in the water is required, we 
suppose, for simplicity, that the motion in the water is given by linear, irrotational, 
gravity wave theory for small perturbations to deep water with a free surface boundary 
condition (see e.g. Lighthill 1978, p. 204). Then, moving with the wave crests, the 
surface boundary condition on the horizontal air speed gives 

2' = akc. (2.3) 
Furthermore, the phase speed of the wave is related to k by 

c = (g/k)i. (2.4) 
As with the wave shape, the O((ak)2) corrections to (2.2), (2.3) and (2.4) for a Stokes 
wave can be included without difficulty, but to be consistent with the linearized 
calculation of the air flow they are not considered here. 

For the present purposes of studying the generation of waves by wind, this model of 
the general wave train as a superposition of freely travelling linear waves is supported 
by the laboratory measurements of Ramamonjiarisoa (1974, and discussed by Phillips 
1977), who measured the phase speeds of the various spectral components of wind 
waves. These experiments show that components of the wind waves with frequencies 
less than the frequency of the spectral peak (which is the portion of the spectrum that 
extracts energy from the wind) follow the linear dispersion relation. Phillips (1977) 
argues that the same should be true in the ocean. 

The turbulent flow of the air over the water causes the dominant wave to be covered 
with ripples, i.e. waves of a wavelength that is much less than L = 21c/k, the wavelength 
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of the dominant wave. The effect of these ripples on the air flow is equivalent to an 
aerodynamic roughness, of length z,, provided the Reynolds number, zo u*/v, (u* is the 
friction velocity of the air flow), is sufficiently large (in practice, greater than about 5) .  

A characteristic timescale of the evolution of the ripple field is the timescale for the 
growth of a ripple. Anticipating the results of $5.4, the growth of a wave of 
wavenumber k and period T(k) occurs on a timescale 

P w  c2 T ( k ) - - - -  P w  cz 1 Qk) - - - 
Pa u* pa u: ck' 

Hence longer waves grown on longer timescales. The laboratory experiments of 
Ramamonjiarisoa (1974) shows that all the ripples move with an approximately 
constant phase speed that is of the same order as the phase speed of the dominant wave. 
Hence, since the ripples have much shorter lengthscale, (2.5) shows that they grow on 
a timescale that is much shorter than that of the dominant wave. Because the flow is 
steady if the dominant wave does not grow, this suggests that the ripple field is in a 
local equilibrium where it responds to the local flow conditions. The waviness of the 
interface causes a variation along the wavelength in the flow properties and hence the 
ripple field. Effects that can cause a variation in the ripples include the variation of the 
air flow shear stress, advection by the orbital motions associated with the dominant 
wave and an associated instability (Longuet-Higgins & Stewart 1960), whereby ripples 
are steepened at the crest of the dominant wave. 

Gent & Taylor (1976) showed that a variation in the roughness length along the 
wave may significantly effect the wave growth, but this effect has never been 
mathematically analysed and related to the other processes. In the present study, as a 
heuristic exercise, we focus on only the effects of the varying shear stress. The 
roughness length parameterizes the local drag force on the surface. Hence the 
roughness length is greatest where the concentration and steepness of the ripples is 
largest. The experiments of Wu (1979) suggest that the product of the number density 
and slope of the ripples is largest at the wave troughs. In $4.2.2 we show that this 
correlates with the shear-stress perturbation, AT*, induced by the wave interface, which 
is also largest at the crests. This suggests that the Charnock (1955) relation may be used 
to calculate the local change in roughness, Az,, from the local flow properties, since this 
implies that Az,/z, = A7*/pau:. Other, more sophisticated, formulae could be used 
(e.g. that suggested by Wu 1968), but the scalings do not change and the added 
complexity does not seem justified. In $4.2.2 we describe how to calculate the 
perturbations to the air flow caused by this variation in roughness length. 

When the roughness Reynolds number, z, u J v ,  is less than about 1 , the ripples have 
little effect on the air flow and the surface is aerodynamically smooth. In this case the 
viscous sublayer may be represented by an equivalent roughness length zo x 0.1 v/u*. 
(This is justified because, as we show in $3.3, very close to the surface the perturbed air 
flow follows the classical law of the wall.) 

In additon to the motions associated with the wavy interface, experiments (e.g. Wu 
1975; Cheung & Street 1988) show that the mean shear stress of the wind induces a 
drift current in the water near the interface. The drift, of speed U, = O(u,) at the 
surface, has both a kinematic and dynamic effect on the air flow. Its kinematic effect 
may be understood with the present theory, as is discussed briefly in $2.2. The recent 
numerical computations of the coupled air-water system by Harris (1992) suggest that 
the drift current does not have a significant dynamical effect on the growth of the 
slowly moving waves studied in this paper. The detailed dynamics of the drift current 
are therefore not considered in the present study. 
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2.2. Flow in the air 
In the absence of the waves the air flow is statistically steady (at least on timescales long 
compared with a time for an eddy to be advected over a wavelength). The flow field is 
divided into a mean and turbulently fluctuating quantities. Near the surface, in the 
inner region, the unperturbed mean-flow profile U,(z) is assumed to vary log- 
arithmically (even though the surface bounding the air flow is a liquid, laboratory 
experiments confirm this assumption, e.g. Hsu et al. 1981). Above the inner region the 
mean flow profile may take a more complex form, which makes it possible to apply the 
analysis to stratified flows in the environment. Initially we consider the problem in the 
frame in which there is no mean drift at the surface of the water so that U,(zo) = 0. In 
the frame of reference that moves with the wave crests, the unperturbed velocity profile 
becomes UB = U ,  - c, where c is the wave phase speed. In cocurrent wind-wave flow 
c > 0, so that at the surface 0, < 0. If U,(z) has a logarithmic profile, UB is also 

(2.6) 
logarithmic, i.e. 

but zo is replaced by a different virtual origin z ,  = zo exp ( K C / U * ) ,  which is equal to the 
matched height, where the wind speed equals the wave speed. If there is a mean drift 
current in the water near the surface (of magnitude U, at the interface), the mean 
velocity profile in the air is offset by a constant value, U,, so that 0, = U,-c+ U,, i.e. 
the drift counteracts the effects of the non-zero wave speed and reduces the height of 
z,. Hence this kinematic effect of the drift current is contained within the present 
analysis if, in the definition of z,, c is interpreted as the wave speed minus the surface 
value of the drift current. 

In the present study, we calculate the linear changes to the air flow caused by small- 
amplitude waves. The experimental data of Hsu et al. (198 1) show that, for ak = 0.107, 
the linear perturbations to the air flow are within about 10 % of the total perturbations. 
Furthermore, the nonlinear, numerical simulations of Gent & Taylor (1976) are also 
in acceptable agreement with linearized simulations for waves of small slope. Further 
evidence for the value of a linear calculation is provided by the success of the linear 
theory of flow over fixed topography (see e.g. Mason & King 1985, and BNH). 

The wind feeds energy to the waves, which causes the wave amplitude to increase, 
and hence further modify the wind structure. In $5 we show that the rate of transfer 
of energy is proportional to @,/p,), the ratio of the fluid densities (- for air over 
water) and the growth rate of the wave occurs on a timescale O(Tp,/p,), where T is 
the wave period. If L/Uo  is the time for a fluid element to be advected or distorted over 
one wavelength (U,  is an advection speed that is defined more precisely below) then, 
since the wave shape is steady over a timescale long compared to L / U , ,  the 
perturbations in the air are quasi-steady if L/  U ,  + Tp,/pa, which is always satisfied in 
practice for an air/water system. The steady solutions found here for the air flow are 
then valid up to times of O( Tp,/p,), and can be regarded as the leading-order term in 
a hierarchy of scaled time solutions analogous to those found by Janssen (1982) for the 
quasi-inviscid problem. 

2.3. Equations governing the air JIow perturbations 
Non-dimensional forms of the mean velocities are defined with respect to the 
unperturbed value at a reference height h,, so that U,(z) = U,,U(z), where 
U, = UB(hm). Later, h, is defined to be the scale height of the middle layer where the 
leading-order pressure perturbation develops, so that the pressure scales on pa 17:. The 
Reynolds stresses are made non-dimensional with the unperturbed surface shear stress, 
which is expressed as p a u i ,  where u* is the unperturbed friction velocity. 

U B  = (u*/K)  In (z/zm),  
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The flow variables in the air are expressed as the unperturbed value for the flow in 
the absence of the wave plus a small perturbation : u* = U, + Au*(x, z, t) ,  etc. The wave 
slope is assumed small so that the perturbations are formally expanded in powers of 
ak, namely 

} (2.7) 
A#* = U,(aku['I + (Qk)2u1z1 + . . .), 

Ap* = pa U:(akp"] + (ak)2p;p[21 + . . .), 
Aw* = U0(akw"' + (ak)2w[21 + . . .), 
A7$ = pa ui(akT$ + (ak)'~$ + . . .); 

A7$ is the Reynolds stress perturbation (for the shear stress 7[11 = 7;:;). These 
expansions are substituted into the Reynolds-averaged equations and successive terms 
are calculated iteratively. Only the solutions for the leading-order terms are calculated 
(so that the superscript [l] is omitted); the detailed analysis (HLR) shows that they are 
indeed proportional to ak. 

Close to the surface the flow follows the undulation so that the presence of the 
undulating wave shape induces a vertical-velocity perturbation. To model this we 
introduce a (dimensionless) displaced coordinate system, (X, Z), which follows the 
surface close to the wave, i.e. Z - kz - ak eitZ as kz -+ ak eikz, and tends to the Cartesian 
coordinates high above, i.e. Z - kz as kz-t co. Hsu et al. (1981) discuss in detail the use 
of a displaced coordinate system. The form we use is similar to their suggestion (which 
follows from Benjamin 1959, and others); it is 

kx = X-akieiXe-', kz = Z+akeiXe-'. (2-8) 
This smooth coordinate transformation is discussed in detail by Belcher (1990), see also 
BNH. 

Flow perturbations expressed in the displaced coordinate system are denoted with 
subscript ' d'. On transforming to this system, the vertical-velocity perturbation, at 
leading order in ak, becomes, 

(2.9) 1 w(kz) = i eiX-' + w d ( Z )  

= do) + wa. 

The form of the transformation is chosen such that do) is the inviscid, irrotational flow 
induced by the undulation. The horizontal velocity perturbation in the displaced 
coordinate system is defined as being equal to that in the Cartesian coordinates, i.e. 
ud(Z) = u(kz). 

The main effect of the coordinate transformation on the form of the, governing 
equations is to provide a source term in the continuity equation which drives the 
perturbed flow, namely 

au, aw, - .  
ax az -+- - IUe-'. (2.10) 

In a frame moving with the wave crests, the equations governing the steady linear 
perturbations become 

where E = uJU0 is a small parameter of the problem, which, for a stationary 
undulation, is typically 0.03-0.07 in the atmosphere. In $3.4, 8 is related to 
(u,  + c) /UB(L),  the basic small parameter of the problem. The Reynolds number is 
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assumed to be sufficiently large that either the flow is aerodynamically rough or that 
the flow very close to the surface follows the law of the wall (see 53.3); then the viscous 
stresses do not have to be considered explicitly. Equations (2.1 1) should each have two 
extra terms that arise from the coordinate transformation and involve the gradients of 
the unperturbed pressure and Reynolds stress distributions. In the very deep boundary 
layers considered here, these terms are numerically small and have been neglected 
(Belcher 1990). 

Before discussing the boundary conditions to be imposed on (2.10) and (2.1 l), we 
observe that the moving wave induces two forcings on the air flow: the undulating 
shape of the wave, with perturbations denoted by superscript (U), and the non-zero 
value of the velocity at the surface of the wave, with perturbations denoted by 
superscript (Sl). It is now shown that, for the linear perturbations, these two forcings 
may be analysed separately, so that the vertical-velocity perturbation may be written 

(2.12) 

The (U)-perturbations arise mathematically from the source term in (2.10) that is a 
result of transforming to the displaced coordinates. Hence the (U)-perturbations are 
calculated from (2.10) and (2.1 1) with the boundary conditions 

ud (U) 9 W(u) d ,Pd (U) ,?d W + , O  as z-, 00, (2.13~) 
ui‘) = 0, wi”) = 0 on = kz,. (2.136) 

The (S 1)-perturbations are then needed to satisfy the non-zero surface velocity, which 
in the Cartesian coordinates are 

u = iicos (kx), w = w sin (kx) on z = 4, (2.14) 

where, from (2.2), iP = akU,iiand akc = wU,. Evaluating (2.12) at the interface and 
using (2.13), (2.14) and U,(z,) = - c /  U,, shows that 

wiS”(kz,) = 0, (2.15) 

which is a consequence of the interface being steady and a streamline. Hence the (S1)- 
perturbations are calculated from the governing equations without the transformation- 
induced terms, i.e. equations (2.10) (with the right-hand side being zero) and (2.1 l),  
subject to the boundary conditions 

uhs1), wisl),  pis1), 7is1) -+ 0 as Z +, 00, (2.16~) 
uisl) = iicosx, wisl) = 0 on Z = kz,, (2.166) 

i.e. flow over a flat rubber sheet carrying longitudinal waves! 

3. Asymptotic structure of the perturbations 
In this section the asymptotic structure of the linear perturbations is discussed. HLR 

found that the perturbations to a turbulent boundary layer passing over a low hill 
could be analysed within a four-layer structure, and BNH show that this structure is 
capable of describing a whole class of perturbations to turbulent boundary-layer flows. 
An important difference in the moving-wave problem is that, in the frame moving with 
the wave crests, the unperturbed velocity profile has a region of reversed flow below z ,  
which does not appear when the obstacle is fixed (i.e. a hill). In this study, we restrict 
attention to small values of (u* + c)/U,(L) so that the region of reversed flow is very 
thin. It is assumed, and justified aposteriori, that in the limit of (u, +c) /U, (L)  << 1, the 
same four-layer structure describes the flow. A new solution is required for the 
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perturbations in the thin region of reversed flow and at the matched height. The 
analysis shows that this layer has only a small effect on the perturbed flow above. In 
$3.4 we examine the restrictions placed on the validity of the solutions by the 
assumption that the HLR four-layer structure describes the perturbations. 

3.1. Changes to the turbulence structure 
Define a Lagrangian timescale of the turbulence, e.g. an eddy turnover time 

TL(Z*) = Z * / u ,  (where Z* = Z / k ) .  
Also, let 

TD(Z*) = k-’ /U(Z*) = k - l / { ( u * / ~ )  ln(Z*/z,)} 

be the timescale for an eddy to be advected and distorted over the wave. Then 
TL - TD when Z* - I ,  klln(l/z,) - 1, and it is convenient to fix the constant so that 

klln (//z,) = 2K2. (3.1) 

The flow is consequently divided into two regions: the inner region, where Z = O(kl), 
and the outer region, where Z = O(1). Towards the surface where Z/kl+O, TL 4 TD 
and the turbulence tends to a local equilibrium. In the outer region, where Z B kl, 
TD < TL and the changes to the turbulence are ‘rapid’, i.e. dependent on the history of 
the strain, and not on the local velocity gradient. 

This argument shows that, as the surface is approached, since the turbulence is in 
local equilibrium, it is dependent on only the local gradient of the mean velocity. BNH 
discuss the effects of curvature, and advection and diffusion of turbulent energy, which 
are also important when Z - kl. They show that the effects on the mean flow are small. 
For the present purposes, the main conclusion from BNH is that the Reynolds shear 
stress can be modelled adequately by a perturbation mixing-length formula (Townsend 
1965) throughout the inner region, viz. 

Furthermore, the linear changes to the normal Reynolds stresses in the inner region are 
proportional to the changes to the shear stress, so that 

rXx = - a T d ,  7zz = -1876, (3.3) 

where the constants a and 18 are determined from measurements of an equilibrium 
atmospheric boundary layer, taken here as a = 6.3, 18 = 1.7 (a fuller discussion of this 
approximation can be found in BNH). 

The analysis of the timescales also shows that in the outer region the distortion of 
the turbulence is ‘rapid’, so is determined by the history of the straining of the eddies, 
and not on the local gradient of mean velocity, or the interaction with the other eddies. 
The changes to the normal Reynolds stresses may then be expanded in power series of 
the velocity perturbation, e.g. 

(Britter, Hunt & Richards 1981). This shows that in the outer region A(T& = O(aku:). 
The dimensionless Reynolds-stress gradients are then of O( I), which, through the mean 
momentum equation (2.1 l), produces dimensionless velocity perturbations that are of 
O(2).  If the mixing-length model is erroneously used in the outer region, A7,* is of 
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O(akU, u*), which leads to dimensionless velocity perturbations that are too large by 
a factor of O( 1 /e); this leads to significantly different values for the wave growth rate, 
see $5.5.  

3.2. Structure of the mean flow perturbations 
We now examine the structure of the linear changes to the mean flow when the 
boundary layer is subjected to a linear forcing. The unperturbed velocity profile is 
written 

(3 * 5 )  
then the scaling arguments of BNH can be used with z, replacing zo. 

As shown in $3.1 above, in the outer region the leading-order perturbations are 
described by inviscid dynamics, because the Reynolds stress gradients are O(e2) smaller 
than the inertial gradients, and (2.11) can be reduced to a single equation for the 
vertical velocity perturbation, 

U(Z)  = ( € / K )  In ( z / z m ) ,  

Asymptotic solutions to this equation may be found by separating the outer region into 
two layers: an upper layer, 2 = O(1), where the shear in the unperturbed profile is 
assumed small compared with the streamwise variations (a2wd/3X2); and a middle 
layer, Z = O(kh,), where the shear is larger than the horizontal variations. The scale 
height, h,, of the middle layer is the height at which these two processes balance, i.e. 

a2wd/ax2 - u"wd/u; (3.7) 

kh,  In: (h,/z,) = 1. (3.8) 
The scale for the velocity perturbations, U,, is then defined to be U(hm). The solutions 
in the outer region are found iteratively as power series in kh, = ( E / K ) ~ .  

Throughout the bulk of the inner region, in the shear stress layer (referred to as the 
SSL), where Z = O(kl) ,  the perturbation pressure gradient balances the inertial term 
at zeroth order. The shear-stress gradient balances the difference of these terms at first 
order in the small parameter 6, where 

6 = ln-l(l/zm) = B/KU(I)  = O(a). (3 .9~)  

The dimensionless value of the unperturbed velocity U(1) = 1 + 0(6 In (1  /6)). The 
asymptotic solution in the SSL is calculated in terms of 5 = Z / k l =  O(l), with the 
dependent variables scaled as 

so that if U is a logarithmic profile, 

2id eiX, p - -Pdeix. (3.9b) d -  Gd ,iX , T d = -  
U 2 ( 0  

, w d = -  ud - ' d  ,iX 

U ( 0  W )  
Substituting for the unperturbed velocity profile, and using the mixing-length formula 
for the shear and normal stress, the X-momentum equation becomes 

(3.10~)  

The scaled perturbations are expanded in powers of 8, and the solutions found 
iteratively (HLR). The first two terms in the solution for a, are 

ad = - P { 1  +&(I -1n5-4~,[2(i~)i])), (3.10b) 
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where G(O) = - 1 is the leading-order solution for the scaled-pressure perturbation at 
the surface and KO is the modified Bessel function (Abramowitz & Stegun 1972). The 
significance of this result is that Ko[2(i@] has real and imaginary parts, so that 1, is 
asymmetric with respect to the wave elevation. Furthermore, (3.10b) shows that the 
streamwise velocity perturbation has the asymptotic forms Au - -In 5 as [+ co and 
Au - l n t  as c + O .  Hence there is a maximum in the velocity perturbation within the 
inner region. 

The solution for the shear-stress gradient found using this technique, diverges 
logarithmically as the surface is approached, Sykes (1980). The shear-stress gradient 
adjusts to the finite surface value across a very thin layer close to the surface (the inner 
surface layer referred to as the ISL), which is considered in the next section. 

3.3. Analysis of the inner surface layer and the matched height 
The pioneering work of Miles (1957) attached considerable importance to the matched 
height in the wind generation of waves. In this section we show that, for the slow waves 
considered in this study, the matched height lies within the (ISL) and does not have a 
dynamical effect on the perturbed flow. 

The solution (calculated from (3.10) and (3.2)) for the shear-stress gradient in the 
SSL shows that 

i%d/a[oc6Inc as c+O, (3.1 1) 

i.e. it diverges logarithmically towards the surface. The exact (and finite) surface 
boundary condition for aTd/aZ may be constructed from the X-momentum equation 
(see (3.13 c) below). Asymptotically correct solutions for the perturbations are obtained 
by analysing an even thinner layer, the ISL, which is exponentially thin compared with 
the SSL. In the ISL Z = O(kz,) so that the matched height lies within this layer. A 
practical estimate for the depth of the ISL, l,, is the height where the shear-stress 
gradient calculated from the SSL solution equals the exact, surface value. This implies 
that 

1, = (lz,)f. (3.12) 

The ISL is most easily analysed in terms of the perturbation shear stress, T ~ ,  which 
changes very little across this layer. Eliminating the pressure terms between the X- and 
2-momentum equations, and then using the continuity equation and mixing-length 
formula, (3.10a) reduces to an equation for +d, namely 

where 7 = Z/kz,, the hatted variables are defined in (3.9b), and 

(3.1 3 a) 

(3.13 b) 

where v0 = zo/z,. A boundary condition on the shear-stress gradient may be 
constructed by considering the X-momentum equation at the wave surface, where 
Ud(T0) = #, Wd(7]0) = 0, u(Zo) = -C/uo, and pd(q0) = 6, SO that 

(3.1 3 c) 

Solutions to (3.13) are calculated iteratively by expanding the perturbations in 
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powers of kz, and then in 6. Providing kz, I In (zm/zo) 4 1 (a condition which is 
examined in g3.4 below) then at  O([kz,lo), 

a;p/aT = 0. (3 .11~)  

Hence at leading order the shear stress across the ISL is constant, 

ftp’ = .itp’(y,), (3.14 b) 

and is determined by matching with the SSL solutions. Furthermore, using the mixing- 
length formula, the velocity perturbation is calculated as 

At O(kzm), (3 .13~)  can be integrated to give 

where a.f.:)/aTllo is determined from (3.13 c). These solutions show that the shear-stress 
gradient is non-singular at the matched height, when 7 = 1. The matched height 
therefore plays no significant dynamical role in the flow for the small wave speeds 
considered here. 

In the ISL, 7d and a 7 d / a ~  are the slowly varying quantities, so that approximate 
solutions can be constructed by considering the equation for the shear stress. This 
approach avoids the apparent singularity in the momentum equation at z,, where the 
unperturbed velocity has a zero. The key feature is that, although U - 0 near the 
matched height (so that u d ( Z )  may not remain small compared to U(Z) ) ,  the velocity 
and shear stress perturbations remain small compared to U B ( l )  and u i  respectively. 
The equation for the turbulent shear stress shows that it remains appropriate to expand 
the perturbations as power series in the wave slope. It is therefore inappropriate to 
apply the inviscid, Miles (1 957) theory to the slowly moving waves considered here. 
(Miles 1967 recognized that the Reynolds stresses play a significant role in the wave 
growth.) 

3.4. Range of wave speeds for the asymptotic analysis to be valid 
The solutions are valid when 6 < 1, i.e. when 

1 + In (z,/z,) + In ( l / zo)  (3.16 a) 

but we have the relations ln(z,/z,) = K C / U * ,  and ln(l/z,) - UB(l) /u* - U,(L)/u,,  so 
that the condition for the analysis to be valid, equation (3.16a), may be written 

(u*+c)/UB(L) < 1. (3.16b) 

In fact this condition is equivalent to E = u J U ,  < 1, since 

U,, = UB(h,) = UB(hm) - c - UB(L)  - C, (3.17) 

so that (3.18) 

The shear stress in the ISL is constant at leading order provided kz, In (zm/zo) 6 1. 
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This condition is always satisfied when c is positive and (3.16) is satisfied: 
kz, = O(Se-”b), so that 

1 K C  K C  kz, In (z, /zo) - S e-’Id - - < - < 1. 
6 uo uo 

(3.19) 

When c is negative (for countercurrent wind/wave flow) Ikz, In (z,/zo) I 4 1 if 

Iu* +Cl/VO 4 1. (3.20) 

4. Characteristics of the perturbed flow 
In a frame moving with the wave crests, the wave is steady and produces two forcings 

on the boundary layer above, namely (i) the undulating shape of the wave, with 
perturbations denoted by superscript (U), and (ii) the non-zero varying tangential 
velocity at the surface, with perturbations denoted by superscript (Sl). For a linear 
analysis of small perturbations, the effects of these two forcings can be analysed 
separately. We also consider the effect of a varying surface roughness, with 
perturbations denoted by superscript (S2) .  

The solutions for the perturbations induced by each of the forcings are quoted from 
the previous studies of HLR, BNH and Belcher, Xu & Hunt (1990). In order to 
understand the processes that govern the growth of the wave, it is necessary to review 
some aspects of these solutions. 

4.1. Perturbations forced by the undulation 
In $2.3, the perturbations to the flow over the undulating wave shape were shown to 
be forced by a vertical-velocity perturbation induced by the surface. The unperturbed 
velocity profile has a region of reversed flow below the matched height. In the ISL this 
leads to differences between the perturbations induced by moving and rigid undulations 
(see $3.3). Above the ISL the movement of the wave has the kinematic effect of 
changing the virtual origin of unperturbed velocity to z, and thence modifying the 
scale heights of the asymptotic layers. Otherwise the analysis of the layers above the 
ISL follows HLR and BNH ; these solutions are listed in Appendix A. This component 
of the solution is denoted by superscript (U). The perturbations have been scaled so 
that .Au1”’ = O(l), i.e. the undulation induces Au* = O(akUo). 

A key feature of these solutions is that, as explained in 53.2, within the SSL the 
balance in (3.10a) at O(S) the Reynolds shear stress and inertial terms leads to the 
streamwise velocity perturbation, uiu), being smaller by O(S) on the downwind slope 
than on the upwind slope, i.e. it is out of phase with the potential flow solution (see 
figure 2 b, which shows only streamlines above the recirculating region). BNH examined 
the implications of this asymmetry and showed that continuity implies that whu) has an 
asymmetrical component of O(#) and the associated asymmetrical vertical and 
horizontal pressure gradients are also of O(Sz). An alternative explanation for this 
asymmetric pressure perturbation is that the asymmetry of the streamlines in the (SSL) 
causes the potential flow in the upper layer is displaced slightly out of phase with the 
wave surface. This was termed non-separated sheltering by BNH. 

The pressure perturbation that is in phase with the wave slope plays a central role 
in the mechanism of the growth of the wave. BNH make a careful study of the various 
processes that can induce an asymmetric pressure at the surface of a fixed undulation 
(the mechanisms designated NSS, IRS, ORS and FAD in $ 1 and see figures 2-8) and 
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show that non-separated sheltering leads to the dominant contribution, the other 
effects being a factor of O(6) smaller. The arguments leading to these conclusions do 
not involve analysing the ISL, hence, since in the present moving-wave problem the 
flow perturbations above the ISL are equivalent to those induced by a fixed undulation 
with an unperturbed velocity profile that has a virtual origin at z ,  (see $3.2), the same 
conclusions hold in the present flow. Furthermore, BNH calculate the asymmetric 
pressure perturbation using linear theory and thence the contribution to the drag 
arising from non-separated sheltering. The resulting formula for the drag is in excellent 
agreement with values computed using the complete, nonlinear, Reynolds-averaged, 
momentum equations using a second-order closure model for the turbulent stresses (see 
BNH figure 11). 

The essential feature of this linear model is that the mixing-length model for the 
shear stress perturbation is used in the inner region only; the perturbations to the 
Reynolds stress components in the outer region are determined by the rapid distortion 
mechanism (see $3.1). If the mixing-length formula is erroneously used throughout the 
perturbed flow then the calculated asymmetric pressure perturbation is too large by 
O( l / ~ ) ,  which leads to overly large estimates of the drag (see BNH figure 11 ; figure 10 
below) and the energy flux to the wave motion (see $5). 

4.2. Perturbations induced by the surface boundary conditions 
4.2.1. Perturbations forced by the orbital velocity at the wave surface 

Now consider the component of the perturbations induced by the orbital velocity of 
the water at the surface of the wave, which is denoted by superscript (Sl). 

Formally the solution for varying surface velocity is the same (except in the ISL) as 
caused by a change in the surface roughness length from zo to zo + Azo : a change of 
velocity at a given height zo is equivalent (at a height much greater than zo)  to changing 
the height, from zo to zo + Azo, at which the velocity is zero. The perturbations induced 
by a varying surface roughness have been analysed by Belcher, Xu & Hunt (1 990) using 
the same analytic framework of inner and outer regions as for fixed undulations 
(similar results were also obtained by Walmsey, Taylor & Keith 1986). When the 
roughness length of the surface changes to zo+Az,,  the perturbation velocity at a 
height zo, to first order, is 

(4.1) 

Conversely, if u*(z,) is changed by Au*, the equivalent change in roughness length is 
given by 

(4-2) 

Hence, the solutions of Belcher et al. (1990) for the perturbations due to a varying 
surface roughness can be modified and used to calculate the perturbations induced by 
the varying surface velocity. In Appendix B we list these solutions in the form which 
satisfies a varying tangential surface velocity. 

From (2.16 b), the tangential velocity induced by the orbital motions at the surface 
is, ~ ~ ~ " ( k z , )  = ucos X ;  for deep-water gravity waves, this becomes 

Au*(zo) = - ( u * / K )  In (1 + Azo/zo).  

z, + Azo = zo exp (- ~ A u * / u , ) .  

U ~ ~ ' ) ( ~ Z , )  = (c /Uu)  cos X = U(1) S In (z , /zo)  cos X. (4.3) 

Our theory is valid when In ( zm/zo)  = O( 1) (see $ 3.4), so that the (S 1)-perturbations are 
smaller by O(S) than the (U)-perturbations, which are O(1) (see $4.1). 

The streamlines of the perturbations due to varying tangential velocity are sketched 
in figure 7. The variation in the surface velocity accelerates and decelerates the flow in 
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phase with the surface variations near to the surface, in the lower part of the inner 
region. The orbital motion of the water at the surface of the wave is in phase with the 
elevation of the surface, and hence, close to the surface, the streamwise velocity in the 
air is also in phase with the wave displacement. By contrast, at the top of the inner 
region, the interaction between the inertial- and shear-stress perturbations leads to the 
acceleration and deceleration of the flow being out of phase with the surface elevation. 
Continuity then leads to a second-order vertical velocity which drives the outer-region 
flow and leads to a streamwise dS1) (and hence a p‘”)) perturbation in the upper layer 
which is in anti-phase with the wave slope. Hence, the boundary layer tends to be 
thinned downwind of the wave crest, in contrast to the direct effect of the undulating 
wave shape which thickens the boundary layer in the lee of the crest. A more complete 
discussion of this phase shift is given in Belcher et al. (1990). The solutions (B 2) and 
(B 4) in Appendix B show that the asymmetric pressure perturbation induced by the 
orbital surface velocity is 

pi‘’’ = O( - (ak) 63 In (zm/zo)), 

i.e. O(61n (z,/z,)) smaller than the asymmetric part of pAu). 

4.2.2. Perturbations due to the varying surface roughness 
By linearity, the variation of the surface roughness may be accounted for by 

calculating perturbations due to a flat surface with varying surface roughness and 
adding them to the other two components of the solution. The component of the 
solution induced by the change of roughness is denoted by superscript (S2). 

The local change in the roughness length is assumed, following Charnock (1955), to 
be proportional to the local change in the shear stress (see $2.1 for a full discussion). 
The solutions in the Appendices show that the undulations and the orbital surface 
velocity induce variations in the shear stress at the surface of the wave of magnitudes 
ATX(~)(~Z,) = O(aku:) and A T ~ ( ~ ~ ) ( ~ Z , )  = O(aku: 61n (zm/zo)) respectively. Hence, at 
leading order, the surface shear-stress perturbation is induced by the undulating wave 
shape and so produces the dominant change to the surface roughness: 

and the surface roughness is increased at the wave crests (where the perturbed shear 
stress is maximum) and decreased at the troughs. 

The effective tangential surface velocity is 

so that the flow is decelerated at the crest, contrary to the effect of the orbital velocity, 
which accelerates the boundary layer at the crest. The variation in the surface 
roughness, like the presence of the undulation, tends to thicken the boundary layer on 
the leeside of the wave. The combined effect of the variations of surface roughness and 
orbital velocity can then be viewed as providing an overall tangential surface velocity, 

u ~ ~ ~ ) + ( ~ ~ ) ( ~ z ~ )  = 6U(l) [In (zm/z,) - 2/U2(1)] cos x, (4.6) 

and these two effects balance when 

KC/U* = ln(z,/z,) = 2/U2(1). (4.7) 
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For wave speeds greater than this critical value, the perturbed boundary layer is 
thinner on the leeside of the crest than for the equivalent rigid undulation. In many 
practical situations, the flow is such that these two effects are close to cancelling. 

4.3. Discussion of the complete solution 
What are the similarities and differences between the solutions derived for a fixed 
undulation and the moving wave? The leading-order mean-velocity perturbations due 
to the undulations are udu) = O(1). The varying tangential velocity of the (Sl) 
perturbations is O(S1n (z,/z,)), and the effective tangential velocity of the (S2) 
perturbations is O(S). Furthermore, the perturbations induced by a varying tangential 
velocity (Appendix B) are rather small : in the SSL, uLs') is a factor of O(S) smaller than 
the surface value. So that, overall, the velocity perturbations due to the surface effects 
in the SSL and above are of O(S2) smaller than the undulation-induced perturbations. 
The unperturbed velocity for the moving wave is different from the static case, which 
leads to terms proportional to In (z,/z,) in the three components of the inner-region 
solutions that are absent when the undulation is static. These extra terms, however, are 
also of O(S2). These arguments show that formal differences between the solutions for 
the velocity perturbations over a moving wave and over the equivalent fixed rigid 
undulation are of O(S2). 

There is, however, a more subtle dependence on the relative wave speed : the scaling 
arguments of $ 3  were performed using U(z) = ( E / K )  In (z/z,) .  The dominant effect of 
the motion of the wave on the solutions in the SSL and outer region is then this 
kinematic effect of changing the virtual origin of the unperturbed velocity profile from 
zo to z,. The perturbed flow is thus the same as over a fixed rigid wave, of the same 
wavelength, with its surface at 2 = kz,; the corrections are of O(S2) only. 

Despite the similarity of the gross features of the mean flow to those of a fixed 
undulation, it is precisely the subtle, second-order, asymmetric effects which are 
important in determining the growth of the wave, $ 5 ,  and increased drag force on the 
wave, $6. In particular, the combined effects of (Sl) and (S2) either add to or subtract 
from the asymmetric parts of the flow, as discussed in g4.2.2. The small O(61n (zm/zo)) 
effect of the orbital velocity increases with In (z,/z,), and can decrease the asymmetry 
of the perturbed boundary layer induced by the (U) perturbation. 

We now examine the profiles of the mean velocity and shear-stress perturbations and 
compare with the experimental data of Hsu et al. (1981). For this experiment the 
parameters are k = 0.04 cm-', a = 2.67 cm, so that ak = 0.107, u* = 8.5 cm s-' and 
c = 156 cm s-'. Hsu et al. show that the unperturbed velocity profile matches a 
logarithmic profile only very close to the surface (presumably this is an artifact of the 
relatively low Reynolds number of their experiment). Hence in determining the 
matched height, which is z, = 0.8 cm, and the scale heights of the asymptotic layers we 
have used the unperturbed velocity profile they suggest (their equation (4.5) and figure 
3). This leads to 1 = 7 cm and h, = 15 cm, so that the small parameters for the theory 
are S = 0.5 and kh, = 0.6. These parameters are clearly not small, so that any 
comparisons can be only qualitative (we found very few data sets of velocity and 
shear-stress measurements in the literature, the Hsu et al. data coming closest to 
meeting the requirements of the theory). 

Figure 9 shows the profile of the mean velocity perturbation at the crest of the wave. 
The data were obtained from Hsu et al.3 figure 5 .  The large value of 6 is reflected in 
the large near-surface perturbations associated with the (Sl) and (S2) effects. Although 
the profiles do not agree too well, the magnitude of the maximum velocity perturbation 
is well captured by the (U)-perturbations. The discrepancy between the theory and the 
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FIGURE 9. Velocity perturbation, calculated using the linear theory, at the crest of a sinusoidal wave 
and comparison with the data of Hsu ef af. (1981). uk = 0.107; c = 156 cm s-l; u* = 8.5 cm s-l; 
z, =0.8cm. -, (U) solution; ......, (LJ)+(Sl) solution; ---, (U)+(Sl)+(SZ) solution; A, 
measurements of Hsu et af. (1981). 

data at higher levels is perplexing: the theory shows an exponential decay of the 
perturbations on the Z = O( 1) lengthscale, whereas the data decay much more rapidly. 
Field measurements of the pressure perturbation above a wave field (e.g. Snyder et al. 
1981) have reported an e-z - e-kz decay at large heights; one would then expect a 
similar decay of the velocity perturbation. A second perplexing aspect of the Hsu et al. 
data is that the perturbations appear to be falling to zero at the wave surface. At the 
crest of the wave, according to irrotational theory, the orbital motions of the wave 
motion are maximum, which leads to the large increase in the theoretical values of the 
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FIGURE 10. Profile of the shear stress at the crest of a sinusoidal wave from the theory and from the 
measurements of Hsu et al. (1981). Note the limited range of validity of the theoretical curve. Same 
parameters as figure 9. -, (U) solution; A, measurements of Hsu et al. (1981). 

velocity near the surface (dotted line): perhaps the Hsu et al. data give an indication 
that the irrotational-wave theory is inappropriate. In view of the large value of 6 it is 
hard to draw strong conclusions. 

Figure 10 shows the profile of the shear-stress perturbation at the crest of the wave. 
The data were obtained from Hsu et al.'s figure 10, which gives -AT*.  In view of the 
mean velocity in Hsu et al.'s data going to zero at the surface, we plot only the (U)- 
perturbation component. Despite the large value of 6, the agreement between the 
theory and data is reasonable both qualitatively and quantitatively. The theoretical 
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curve has been truncated at y = 2; the large 8-value means that this is similar to the 
scale height of the middle layer. Notice how the data show that the shear-stress 
perturbation is small and positive in the outer region. If the mixing-length model were 
used here, the shear-stress perturbation would be large and negative! By truncating the 
mixing-length model above the inner region, we avoid this qualitative discrepancy (see 
also BNH). The agreement between the theory and data for the shear stress is 
important. BNH show that the pressure perturbation, Im (pd ) ,  that is in phase with the 
wave slope is related to the shear-stress perturbation that is in phase with the wave 
elevation, Re(7d), which is plotted in figure 10. Hence according to BNH 

We therefore expect that the theory should give reliable estimates for the growth of the 
wave (which is strongly dependent on Im (pd), 0 5) .  

We also compared our theoretical mean-velocity perturbations with the profiles 
computed by Gent & Taylor (1976). We found that the profiles were in qualitative 
disagreement and are not shown here. We note that Hsu et al. (1981) also found serious 
discrepancies between their data and the values computed by Gent & Taylor (1976). 

5. Liquid motions and the growth rate of the wave 

Cartesian coordinate system and in a frame moving with the wave crests) is 
The equation for the energy of the perturbed motions in the water (expressed in the 

where Aa: is the perturbation to the total stress and the time dependence is allowed 
for to study the wave growth. The last term in (5.1) is the buoyancy term and 
g' = g@, -p,)/p, is approximated as g,  since p,/p, x 1 x lo+. 

Integrating (5.1) over the volume bounded by the surface of the wave and vertical 
lines at successive wave crests extending from the wave surface to minus infinity, 

-/((Au:AuTz))dz-/((Aa:?$))dz. (5.2) 

The outward normal is n = (- aki eikz, 1) [ 1 + O(a2kz)], and (( . )) denotes average over 
a wavelength (integral over a wavelength divided by the wavelength). A similar 
expression was derived by Davis (1972), who integrated upwards through the air flow; 
we find it more convenient to integrate downwards through the water. 

Using the kinematic boundary condition, Aw*),,, = Dq/Dt, the buoyancy term in 
(5.2) can be expressed to leading order in ak as 

which is the rate of change of the potential energy of the wave motion. 
Returning to (5.2), the two terms on the left are, using (5.3), interpreted as the sum 

of the rate of change of the potential and kinetic energies, i.e. the rate of change of the 
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total wave energy, 8. The first term on the right of (5.2) is the rate of energy transfer 
across the interface. The second is the rate of working of the wave-induced velocity 
perturbations against the mean velocity gradient; this term is zero if the motion in the 
water is purely irrotational. The third is the rate at which wave energy is lost due to 
work done by the wave-induced stress perturbations, Av;; the contribution from the 
pressure is zero by incompressibility, but the viscous and turbulent stresses dissipate 
energy through this term. 

In deep water, contributions to the third term arise from dissipation in the surface 
boundary layer in the water and the secondary straining of the irrotational motion in 
the bulk of the water flow. In the absence of breaking waves and if the turbulence in 
the surface boundary layer is weak, the latter dominates and is of O(ER;'T'), where 
R, = L2/ (vT)  is the Reynolds number of the wave motion, and T is the period of the 
wave motion (for a full discussion see e.g. Phillips 1977). In many experiments the 
surface boundary layer in the water is turbulent (Cheung & Street 1988) and a large 
energy dissipation may result. Furthermore, when the slope of the waves becomes 
larger the waves break and there is significant dissipation in the surface layer (Longuet- 
Higgins & Cokelet 1976; Phillips & Banner 1974). 

In the present study we focus on the energy supplied to the wave motion from the 
wind above. This energy input arises through the first term on the right-hand side of 
(5.2) which is the rate at which the stresses do work at the surface of the wave; the 
subscript 7- denotes evaluation just below the surface, in the water. The stress and 
velocity are, however, continuous across the interface so that this term equals the rate 
of working of the stresses evaluated just above the wave, in the air flow (denoted 
z = 7+). Using these results, (5.2) becomes 

aE/at = AM: nj>> I,-,,+, (5.4) 

which shows how the solutions obtained for the perturbations to the boundary layer 
above the wave may be used to calculate the energy flux into the wave motions. The 
distinction that (5.4) provides the flux into the wave motion is important : the air flow 
supplies additional energy into the water which drives surface currents (Hsu et al. 
1982). 

Previous studies have commonly calculated the growth rate of the wave by matching 
the pressure at the wave surface. The present method shows how the added energy 
transfer induced by the working of the Reynolds stresses should be calculated. 

Substituting for the normal and expanding the stress tensor in (5.4), the energy flux 
into the wave motion correct to second order in ak is 

(5.5) 

where ii and w are the amplitudes of the orbital velocity, associated with the wave 
motions, at the wave surface (see (2.14)). 

In order to evaluate the energy flux, the perturbed stresses in (5.5), which are aligned 
with the Cartesian coordinates, must be related to the stress perturbations calculated 
in the preceeding sections, which are expressed in the displaced coordinates. To do this 
the coordinate transformation (2.8) is locally linearized and a matrix constructed which 
locally rotates from the displaced to the undisplaced coordinates. The details may be 
found in Belcher (1990). The pressure is isotropic so that it is unchanged by the rotation 
of axes. The Reynolds stresses, at the wave surface, in the two coordinate systems, are 
related by 

7,. = ~ ~ ~ - 2 i e ~ ~ T ,  7,, = ~ ~ ~ + 2 i e ' ~ T ,  7 = 7d+ieiX(Txx-T2,). (5.6) 

aE/at = pa U:(ak)2( ([ - p  + s27,,] W sin (kx) + s27Ucos (kx))) 
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qj is the unperturbed Reynolds stress tensor so that T = T,, = 1 in the dimensionless 
system used here. In analogy with the vertical velocity associated with the coordinate 
transformation, (2.9), the second terms on the right-hand sides of (5.6) are called the 
displacement stresses. The expression (5.5) shows that it is components of the shear 
stress that are in phase with the surface elevation that lead to an energy flux, hence the 
correction to the shear stress due to the displacement effect (which is in phase with the 
wave slope) does not contribute to the energy flux. Using these results, (5.5) becomes 

aE/at = p a  I/i(ak)2( (( -pd + e27zz) w sin X+ e27d ucos X- 2e2w sin2 X)) I t - v + .  (5.7) 

This shows that energy is transferred into the wave motion from three sources: 
components of (i) pressure and (ii) variance of the vertical turbulent velocity which are 
in phase with the wave slope; and (iii) the shear-stress perturbation which is in phase 
with the wave elevation (a mechanism discussed by Stewart 1967, and Longuet-Higgins 
1969). The last term on the right-hand side of (5.7) is introduced when the normal 
stress, 7LL, is transformed from the Cartesian to the displaced coordinates. This last 
term will be treated with the contribution to the energy flux from the shear stress (85.3 
below). Each of these three sources receives contributions from each of the three 
components of the solution for the air flow perturbations, namely (U), (Sl), (S2). 

5.1. Contribution to the energy flux from the pressure perturbation 
The pressure perturbation induced by the non-separated sheltering effect of the 
undulation is listed as (A 7) in Appendix A; it is 

where asym ( ) denotes the asymmetric part of the perturbation that is in phase with the 
slope of the wave. This pressure perturbation has corrections caused by the IRS, ORS 
and FAD mechanisms which are smaller than ( 5 . 8 ~ )  by O(6) (see the discussion of 
0 1.  l), which, formally, should be included since we calculate contributions to E from 
the (Sl) and (S2) that are of the same order. The reliable results obtained using (5.8a) 
for the drag on a fixed undulation (BNH figure 8 b )  suggest that these corrections are 
numerically small and so in the present study they are neglected. 

The perturbations to the air flow arising from the variations in surface properties 
also give rise to non-separated sheltering effects. The pressure perturbations in phase 
with the wave slope due to the varying surface velocity (Sl) and the varying surface 
roughness length (S2) are given in (B 4) of Appendix B; they are 

2ii 4s 
asym ( ~ 2 ' ) )  = e2 - u3(1) sin X, asym (pis2)) = - 2 - sin X. (5.8 6 ,  c) 

The (Sl) contribution is of opposite sign to the (U) and (S2) components because, as 
discussed in 54.2.2, the phase of the orbital velocities leads to the boundary layer being 
thickened on the windward slope of the wave. Furthermore, since ii = 0(6), both the 
(Sl) and (S2) effects lead to asymmetric pressure that are of O(6) smaller than the effect 
of the undulation. 

Using these results and the definition B = u*/Uo, the energy flux due to the pressure 
asymmetry is 
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To proceed further the form of the motion in the water must be specified. For deep- 
water gravity waves, where Uo P = c, 

(5.10) 

5.2. Contribution to the energyjlux from the normal Reynolds stress 
The energy budget (5.7) shows that the part of the vertical component of the variance 
of the turbulent velocity which is in phase with the wave slope also contributes to the 
energy flux and the discussion of $3.1 suggests that it can be calculated using the 
relation T~~ = -/3~*. The shear-stress perturbation induced by the undulation is in 
phase with the wave slope at O(6), but the factor 2 then means that this contribution 
to the energy flux is O(6) smaller than the non-separated sheltering pressure effect. 

The solutions (A 3), (A 4) and (A 5 )  in Appendix A show that the leading-order 
normal-stress perturbation induced by the undulation that is in phase with the wave 
slope is 

2@ asym ( T S I U Z ) )  = 1/20 6 sin X, (5.11~) 

and the relevant perturbations induced by the (Sl) and (S2) effects are found from (B 2) 
and ( B  3); they are 

2x/3 P6 sin X, asym (TF~)) = - - w 1 
asym (TF~)) = * cY2 sin X. (5.1 1 b, c) 

U 2 ( 0  

The energy flux due to the normal stress is then 

so that for a deep-water gravity wave 

(5.12) 

(5.13) 

The O(S2) terms arise from the perturbations induced by the (Sl) and (S2) variations 
and are negligible. 

5.3. Contribution to the energyjlux from the shear stress 
Shear-stress perturbations in phase with the wave elevation contribute to the energy 
flux, but the displacement correction to the vertical component of the normal stress 
reduces this part of the energy flux. Furthermore, although the shear-stress 
perturbation is in phase with the wave height at zeroth order in 6, the energy flux due 
to the (U)-component of the shear-stress perturbation is of the same order as the 
contribution from the pressure because of the e2 factor in (5.7). The near cancellation 
of the leading-order contributions reduces the formal ordering of this part of the 
energy flux, see below. From (A 4), (A 5 )  and (B 3), the relevant components of the 
shear stress are 

sym (T(")) = (2/ U2(1)) [ 1 + 6(4y + 1 -In (zm/zo))] cos X, (5.1 4 a) 

sym ( P I ) )  = - a(2/U(l))  [ 1 + 6(2y - In (z,/z,))] cos X, (5.146) 

sym (P2)) = (26/ U2(1)) [ 1 + 6(2y- In (zm/zo))] cos X, (5.14~) 
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where sym ( ) denotes the symmetric part of the perturbation that is in phase with the 
wave elevation. The energy flux due to these perturbations is 

2 4 
-a-{ 1 +6(2y- In (zm/zo))} +TS{ 1 + S(2y- In (zm/zo))}]. (5 .15)  

U(1) u (0 
The first bracketed term on the right of (5.15) is due to the leading-order shear stress 
induced by the undulating surface, 2/U2(1), minus the shear stress from the 
displacement part of the normal stress, -2. These two terms cancel in the limit of 
S + 0 (when U(1) --f 1) and their difference is small whenever the present theory applies 
(W 1): 

l / U 2 ( l ) -  1 - O(Sln(l/S)), 

from ( 3 . 1 )  and the definition U, = ( c / K )  In (hm/zm). Hence the contribution to the 
energy flux from A P )  and the displacement part of the normal stress nearly cancel, 
leading to a positive contribution to the energy flux that is of O(S1n (I/&)) smaller than 
the NSS pressure perturbation. 

For deep-water gravity waves, (5 .15 )  becomes 

[ (u& l ) + & { 4 y + 3 - ~ ( U 2 ( 1 ) + 1 )  
aE(A7) 

= pau:(ak)2$ 2 -- 
at 

5.4. Growth of the wave 
In order to calculate the growth rate of the wave, it is necessary to calculate the energy 
density of the waves and use the results (5.9), (5.12) and (5.15) for the energy flux into 
the wave motion to construct an equation for the evolution of the energy density. 

The energy density of the wave motion is 

E = &w a2c2k, (5.17) 
e.g. Phillips (1977). The amplitude of the wave is then governed by 

/3 = 2a/a = E / E .  (5 .18)  
There is a variety of notation in the literature. Following Plant (1984), we use /3 to 
denote the (dimensional) growth rate of the spectral intensity of a wave of particular 
wavenumber, or, equivalently, the energy density of the wave. Miles (1957) uses /3 to 
denote the imaginary part of the non-dimensional pressure perturbation. 

Using the expressions for the energy flux with (5.18), 

(5.19 a) 

where the growth rate coefficient, Cp, has been written by grouping the components 
from each of the three parts of the air flow solution, namely (U), (Sl), and (S2), so that 

Cf" = & + 2 [ & ( 1 + 6 { 4 y + 1 - ~ } ) - 1 ] + ~ + 0 @ ~ ) ,  267@ (5.19b) 

( 5 . 1 9 ~ )  

(5.19d) 
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FIGURE 1 1 .  Variation of the amplitude growth rate coefficient with c/u* for values of the relative 

roughness kz, = lo-', lo-*. Curves truncated when ( c+u*) /U ,  = t. 

In each case the first term is due to the pressure and the second the shear stress, and 
the third term in the undulation coefficient is due to the asymmetry in the normal 
Reynolds stress. 

The right-hand side of (5.19a) is independent of a, so that the wave amplitude grows 
exponentially at a rate $? and the wave energy, E, at a rate ,8. Furthermore, (5.19a) 
shows that the growth rate is strongly dependent on the friction velocity, u*, which is 
determined by the Reynolds number of the flow when the wave surface is 
aerodynamically smooth, or by the height of the ripples when the wave surface is 
aerodynamically rough. 

5 . 5 .  Variation of the growth rate and comparison with other studies 
Our analysis shows that Ca is dependent on the three parameters, 6, c/u* and U(1). The 
parameter 6 is related to B,  the basic small parameter of the problem, by S = E/(KU(I)) .  
Furthermore, as shown in 43.4, E - (u, +c)/U,(L) (recall that U,(L) is the unperturbed 
velocity at a height L = 2n/k in the frame where there is no mean motion in the water, 
i.e. the unsteady frame). For a logarithmic unperturbed velocity, 

(5.20) 

so that E ,  and hence 6, are fixed by the wave speed relative to the wind speed, c/u*, and 
the ratio of the lengthscales L/zo (which is proportional to the Reynolds number of the 
flow, Re, = Lu,/v, for smooth interfaces). The values of both of these dimensionless 
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(a) Laboratory (b)  Ocean 

AP AT22 A7 Total AP AT22 AT Total 

48 16 19 83 69 15 20 104 
(Sl) - 1  0 - 1  -2  - 1 1  0 -7 - 18 
(U) 

12 0 7 19 9 0 5 14 
100 

(S2) 
Total 59 16 25 100 67 15 18 

TABLE 1 .  Percentage contributions to the growth rate: (a) laboratory experiments, L / z ,  = lo3, 
c/u+ = 1 and S = 0.26; (b) typical oceanic values, L / z ,  = lo6, c/u+ = 10 and S = 0.12 

parameters commonly differ between laboratory and oceanic applications. The 
dimensionless wave speed, c/u*,  also leads to direct variations in Cp since CF1) is linearly 
dependent on c/u, .  

Finally, all the contributions to Cs are dependent on 

(5.21) 

which is determined by the shape of the unperturbed velocity profile, and the ratio L/z ,  
(which determines h, and I ) ,  and is a measure of the shear across the middle layer. The 
leading-order contribution to Cs is proportional to V4(1), so that this effect gives a 
substantial variation in wave growth rate with L/z , .  If the atmosphere is stratified, then 
the shear in the approach flow can be significantly different from that in a logarithmic 
profile and hence the growth rate can be altered (the effect of stratification on the drag 
force of a stationary undulation is currently being studied). 

The effect of the variation of c/u* and kz, on the growth rate coefficient Cp is plotted 
in figure 11. The curves have been truncated when (u* + c) /UB(L)  = k. The figure shows 
that varying the parameters can change the growth rate coefficient by two orders of 
magnitude. Also shown on figure 11 are the values obtained empirically by Plant 
(1984), which are discussed below. 

Table 1 shows the percentage contributions to the growth rate from each of the three 
physical mechanisms and from each of the three components of the air flow solution. 
In table 1 (a)  the parameters are chosen to be representative of the values in laboratory 
experiments, and in table 1(6), typical oceanic values have been selected. The table 
shows that, for both laboratory and oceanic applications, although the dominant 
contribution to the energy flux comes from the asymmetric pressure perturbation 
induced by the undulating wave shape, the overall result is strongly affected by the 
inclusion of the effects of the shear and normal stress variations induced by the 
undulation, and the effects of the varying surface properties. Hence the growth rate 
may be significantly larger than estimated by previous theories and correlations that 
are based on only the asymmetric pressure effect (e.g. Plant 1984). Kendall (1970) 
suggested that the shear stress only transmits about 3 YO of the energy flux, but table 
l(a) (which uses parameter values close to those of Kendall 1970) shows that shear 
stress contributes to 25 YO of the energy flux. Hence, although the contribution to the 
energy flux from the shear stress is formally of O(61n (1 /a)) smaller than the sheltering 
effect, it can significantly contribute to the growth rate. 

Throughout the present study the discussion has focused on cocurrent wind-wave 
flow, but the analysis is also valid when the wind blows against the direction of wave 
propagation. In such a countercurrent wind-wave flow, the wave phase speed is 
negative and (5.19a) shows that the waves are quenched exponentially. When the wind- 
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wave flow is cocurrent, the (Sl) perturbations, induced by the orbital motions in the 
wave, extract energy from the wave motions, but these effects lead to an energy flux 
proportional to c2, (5.19c), so that in countercurrent flow, when c + - c, they continue 
to quench the waves. Hence all the effects tend to reduce the wave motions, so the wave 
amplitude in countercurrent flow decreases faster than it increases in cocurrent flow. 

The wave growth 
motion, T, so that 

This has the form 

rate, (5.19), may be rewritten in terms of the period of the wave 

(5.22) 

postulated by Plant (1984), which he derived by correlating 
laboratory and field experiments and not from any solutions to the equations. In order 
to fit the experimental data, Plant (1984) suggested that C, is constant and equal to 
40+20. In the limit that B + O ,  the theoretical value of C has a finite and non-zero 

U(I) + 1 as E + 0) and is independent of c/u* .  For finite values of E, however, C, is 
significantly larger and increases with c/u ,  (see figure 11). For example, when kz, = 

a value that is intermediate between those typical in the laboratory experiments 
and the oceanic values, ln-l( llkz,) = 0.1 1 and C, ranges from about 23 (when 
c/u* = 0) upwards to about 40 when c /u ,  = 10. These values are then consistent with 
Plant's suggestion. The reason that the asymptotic value of 4 (as E + O )  is so different 
from the value at physically reasonable parameter values is that the asymptote depends 
on In (1 /kz,) tending to infinity, which happens extremely slowly. 

Figures 12(a) and 12(b) show comparisons of the theoretical prediction of the 
growth rate of the energy density, #?, normalized on the frequency of the wave,f= 1/T, 
together with the laboratory data collated by Plant (1984). In figure 12(a), L/z ,  has the 
value lo3, which is representative of the laboratory experiments, and in figure 12(b), 
L/z ,  is lo5, representative of ocean waves. The prediction (5.10) agrees well with the 
experimental data through a wide variety of conditions, so the requirement that 
(c+u*)/UB(L) be small is not severe. 

The asymptotic theory of van Duin & Janssen (1992), which includes the analysis of 
Jacobs (1987) as a special case, uses an eddy viscosity for the shear stress throughout 
the flow. We have argued ($3.1) that this is inappropriate and leads to a growth rate 
that is a factor of 0 ( 1 / ~ )  too large. Denoting their growth rate as /3,,, and rewriting 
in our notation, van Duin & Janssen (1992) find that 

contribution from only the NSS pressure effect; name P y C,+4 (since a+ 0 and 

(5.23) 

i.e. C,,, = 2(1 +in)(K/C--Kc/u*),  which is indeed O(l/e) larger than our value. In 
(5.23), n = O( 1) and determines the precise form of the eddy-viscosity model (Jacobs' 
mixing-length result emerges when n = 0). Furthermore, B = u*/U,(L), whereas we 
have E = u*/( U,(L) - c) - the magnitudes are the same for small wave speeds. 
Although C,,, is formally O( I / E )  larger than our value, in practice our formula gives 
values that are of the same magnitude or larger. For example, substituting kz, = 
and c = 0 gives CVDJ x 18(1 +an), which is similar to the value of 23 from our model. 
Furthermore, when c/u ,  = 10, C,,, = lO(1 +an), which is four times smaller than the 
value of 40 obtained with our model. So, somewhat surprisingly, although C,,, is 
formally larger, for practical values of the parameters, it may give smaller growth rates 
than the present result (5.22). 
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FIGURE 12. The growth rate of the energy density of the wave (twice the amplitude growth rate) 
due to the effect of the asymmetric pressure, made non-dimensional on the wave frequency$ The 
theoretical curves are compared with the data collated by Plant (1984). The upper group of 
experimental points is mainly from wave tank experiments and the lower group from oceanic 
experiments. (a) L/zo = lo3 typical of the wave tank experiments, (b) L/zo = lo6 typical of the ocean 
experiments. 
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Al-Zanaidi & Hui (1 984) have used the results of their numerical model, which uses 
a two-equation closure model for the turbulence, to construct an empirical relation for 
the growth rate; it is 

pa 2 ~ 0 . 0 6  u* ' 
p w T ?  

,,, = - - + P ) ,  (5.24) 

which has a different scaling again. With the parameters used above, this formula 
yields a value C,,, z 32 for all wave speeds, which is between our value at c / u ,  = 0 
(where Cfl = 23) and c/u*  = 10 (where Ca = 40), despite the difference in the formal 
scaling. 

The expression (5.22) for the wave growth rate shows that the original assumption 
that the flow perturbations are quasi-steady is valid up till a time 

(5.25) 

which is certainly large for an air-water system, so the steady flow solutions found here 
are of practical value. 

6. Perturbation drag force on the wave 
The presence of the wave increases the wavelength-averaged drag force on the 

surface. BNH calculate the drag over rigid topography and here the results are 
generalized for a moving surface. 

The force on the wave surface is computed by integrating the normal component of 
the stress tensor, uij, along the surface, 

r 
6 = cr,nidS, J 

where n is the normal into the water. Taking the horizontal component and 
substituting for the stress tensor, the perturbation drag force becomes 

( ~ ~ - e ' 7 , ~ . ~ ) i e ~ ' ~ d X  (6.2) 

correct to second order in ak, and the integrals are taken over one wavelength. The 
linear part of the stress perturbation immediately integrates to zero by periodicity in 
the x-direction, and so the dominant contribution to the drag force is O((ak)') and is 
due to the component of the normal stress (both the dynamic pressure and the normal 
Reynolds stress) in phase with the wave slope together with the O((ak)2) stress 
perturbation. We focus on the pressure force - the second integral in (6.2). 

The pressure perturbation from the undulation component of the solution is in phase 
with the slope at O(S'), and the Reynolds stress at O(6);  however, the factors of E' in 
(6.2) then mean that the pressure term is the largest in the second integral. Similar 
scaling arguments show that the dominant contributions to the drag force from the 
(Sl) and (S2) components of the solution are also due to the asymmetric pressure 
perturbations, but because the amplitude of the orbital velocity and roughness changes 
are O(S) smaller, their contributions to the drag are O(S) smaller than from the (U) part 
of the solution. 

The pressure perturbations required to calculate the change in the drag force are the 
same as used in the calculation of the wave growth rate and are discussed in 85.1. 

s ~~7~ eikz dX-pa U;(ak)' s Z - k z ,  Z - k z ,  

AF = -pa U i a k  
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FIGURE 13. Variation of the normalized drag on the wave surface, AF/@,  u', a%), with wave speed, 
c/u, ,  for kz, = The variation of 6 is also shown (refer to scale on right). 

Overall, for the flow over deep-water gravity waves, the leading-order perturbation 
drag force from the asymmetric pressure is 

s 
AF = pa.', a2k- 

When the present theory is valid, the contribution from the undulation part of the 
solution dominates, and the overall drag is increased. 

Figure 13 shows the variation of the normalized pressure force on the wave surface, 
AF/(p ,  u', a2k), with the dimensionless wave speed, c /u* ,  for the various contributions 
from (U), (Sl), and (S2) as well as the total. Notice in particular the large numerical 
value of this drag coefficient. The variation of the drag with slope is quadratic and has 
been displayed by BNH (their figure 11) for the fixed undulation (c/u* = 0). 

7. Discussion 
We have found asymptotic solutions for the linear perturbations (for small wave 

slope ak) to a turbulent boundary layer passing over a moving gravity wave in the limit 
(u* + c) /U,(L)  + 0. With this condition the analysis can be based on an extension of 
the four-layer theory developed by HLR for the flow over a low hill. Within the linear 
framework, the effects of the undulating boundary and the varying surface conditions 
can be analysed independently. The solution has been constructed by combining (with 
some modification) the theory of HLR, BNH and Belcher et al. (1990) for the 
perturbations due to a rigid undulation and due to a varying roughness length. A 
particular feature of these asymptotic theories is that at leading order the turbulent 
stresses can be calculated by the mixing-length model provided that it is truncated at 
the top of the inner region. If this is not done and the mixing-length model is used 
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throughout the flow, the magnitude of the growth rate is a factor 0 ( 1 / ~ )  too large (van 
Duin & Janssen 1992; Jacobs 1987). 

To make use of this asymptotic theory it is necessary to review the conditions for the 
solutions to be valid. Firstly, the condition for linearization of the perturbations is 
uk < 1. For the flow over rigid undulating surfaces, the linear theory has been found 
to give useful results (Mason & King 1985; BNH) for slopes up to about i, when 
separation occurs. The results for the flow over a gravity wave are expected to be about 
as good up to the same limit. Secondly, we have found approximate asymptotic 
solutions for the linear perturbations. The asymptotic analysis is valid if S 4 1. In 
practice 6 can often be as large as 4 or a, and the theory provides useful results if S is 
as large as t .  An equivalent condition to the requirement of small 6 is that 

Using the expression (5.22) for the growth rate of the wave, we may give order of 
magnitude estimates for the mechanisms which have been proposed to account for the 
wave growth that are listed in the introduction. 

M .  The Miles mechanism 
Miles (1967) recognized that the turbulent stresses may profoundly affect the wave 

growth and we have shown that when (u,+cl/UB(L) 4 1, the matched height lies 
within the ISL, where the leading-order perturbations are determined by the 
perturbation shear stress. Hence, it is inappropriate to apply the inviscid Miles (1957) 
theory. It is, however, instructive to compare with the other mechanisms the magnitude 
of the growth rate predicted by his theory. According to the Miles theory, the energy 

lu*+Cl/UB(L) 4 1. 

Using our expression for the vertical velocity perturbation, we find that the growth 
rate, S, is given by 

which is smaller than the contribution from the asymmetric pressure (see below) by 
O( 1 /Se-l/6). 

NSS. Non-separated sheltering 
The undulation induces an asymmetric pressure perturbation at the surface of the 

wave, caused by the action of the Reynolds shear stress within the inner region. This 
effect leads to the dominant contribution to the flux of energy to the wave, and the 

0 ti --- ’T” 5) resulting growth rate is 

IRS. Inner-region Reynolds stress effects 
Within the inner region, the perturbations to the shear stress which are in phase with 

the topography, and the changes to the normal Reynolds stress which are in phase with 
the wave slope lead to contributions to the growth rate. The shear stress leads to a 
growth rate contribution of 

which is smaller than the sheltering effect by O(Sln(l/S)). 
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The normal stresses lead to a smaller contribution to the growth rate of 

ORS.  Outer-region Reynolds stress effects 
The changes to the Reynolds stresses in the outer region may affect the surface 

pressure through the elliptic effects in the equations, see BNH. These effects lead to a 
surface pressure asymmetry of O(p, U:(H/L)  ~ ~ 6 ' )  (see BNH), leading to a growth rate 
of 

The curvature of the mean streamlines leads to changes in the surface pressure through 
this same dynamical process and leads to a contribution to the growth rate of the same 
order of magnitude. 

SI .  Orbital velocity effects 
The orbital velocity associated with the motion of the water induces perturbations 

to the air flow, which lead to an asymmetric pressure which is exactly out of phase with 
the wave slope, and so inhibits wave growth. The growth rate from this mechanism has 
magnitude 

which grows only linearly with U J C .  

S2. Variable roughness effects 
We have included, as a heuristic calculation, a variation in the roughness length of 

the wave surface induced by the variation in the surface shear stress along the surface 
of the wave. This gives rise to perturbations which increase the asymmetry of the 
perturbed boundary layer, and so lead to an asymmetric surface pressure which then 
induces a growth of the wave amplitude. The magnitude of the contribution to the 
growth rate from this mechanism is 

Gent & Taylor (1976) found that the inclusion of varying surface roughness 
significantly increased the energy flux to the wave, but they did not scale the amplitude 
of the roughness length variation on the slope of the wave, hence they obtain a 
contribution to the growth rate of 

i.e. a larger relative contribution for smaller slope (they kept the amplitude of the 
roughness variation constant for all slopes). We find a smaller but nevertheless 
significant contribution to the wave growth. 

This summary of the magnitudes of the processes controlling the wave growth show 
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that the leading-order contribution arises from the asymmetric displacement of the 
outer-region flow caused by the O ( P )  thickening of the inner region in the lee of the 
wave. This we term non-separated sheltering. The theoretical value of the shear-stress 
perturbation at the crest of the wave at both the wave surface and top of the inner 
region is in good agreement with values measured in the laboratory (54.3) and 
therefore, by an argument developed in BNH, the pressure asymmetry due to non- 
separated sheltering is reliably calculated by the theory. The detailed discussion of 5 5.4 
shows, however, that the O(61n (1/6)) contribution from the shear stress and the O(6) 
corrections, which arise from the IRS, S1 and S2 effects, collectively contribute 
significantly to the wave growth. Hence methods that determine the wave growth from 
the pressure effect only may significantly underestimate the growth rate. 

Despite the restriction that lu,+cl/UB(L) 4 1, the theory has been shown to 
describe a large portion of the experimental observations of the wave growth rate made 
at sea and in the laboratory. 

During the course of this research we benefited from useful conversations with Alan 
Townsend, for which we are grateful. Thanks are also due to Lady Jeffreys, who kindly 
sent some original offprints of Sir Harold's original papers. S. E. B. is grateful for the 
financial support of the SERC under a CASE award with AERE Harwell. We are also 
grateful for the many useful comments made by the referees. 

Appendix A. Solutions for the flow over an undulation 
The unperturbed mean velocity profile is given by 

~ B ( Z )  = ( u * / K )  In (z/zm), 

where the matched height is given by 

z ,  = z eKClu*. n 

The solutions are expressed in terms of the displaced coordinates, which are related 
to the Cartesian coordinates by 

kx = X-akieiX-', kz = Z+akei-'-Z. (A 1) 

Mean flow quantities are made non-dimensional using Uo = U,(h,) and the Reynolds 
stress components on pu:. The linear perturbations in the Cartesian coordinates are 
related to those in the displaced coordinates by 

I u(z) = ud(Z) ,  w(z) = ieix-' + wd(z), p(') = pd(z), 

7,,(4 = 7 x x -  2i ei,K-Z , 7 J z )  = 7zz + 2i eiX-z, 7(z) = 7,, + i eix-'(TxX - Tzz). 
(A 2) 

The following expressions are the solutions for the perturbations in the displaced 
coordinates. 

A. 1. Inner-surface layer 
The vertical coordinate scales on z, and is y = Z/(kz, )  - (1/6)e'ILZ. 

u, - - (1  /U( I ) )  [(SP),(q,)  + 6'?(l)(yo) + O(8')) In (yly,,) + O(kz,)] eiX, (A 3 a) 
(A 3b) 
(A 3 4  
(A 3 4  

wd - - ( / U ( I ) )  [o(kzm)l e'X, 
7d - - (2/U2(1))[?(")(7J + &?(')(yo) + O(P, kz,)] e'". 
pd - [P) + @az, kz,)] eiX. 
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With vo = zo/zm and 

9 (1 + in: + 4y - In (zm/zo)) ~9, 
&(O) = - 1. 

A.2. Shear-stress layer 

(A 4) 

(A 5)  

+'O' = &O) +(I)  = 

The order-one vertical coordinate in the shear-stress layer is 5 = Z / k l -  Z/S. 
ud - - ( ~ / ~ ( l ) ) [ l  +S[I -Inc+A, 

w d  - - (a(")/ U(1)) [ - 2iik25+ O(Sz)] eiX, 

7 6  - - ( 2 ~ ? ( ~ ) / U ~ ( l ) ) [ -  1 +A,gaKo/a~+O(S)]eix, 

P d  - [ 6 ( O )  + Sz&(2) + O(P)] eiX, 

(A 6 4  

(A 6b) 

(A 6 4  

(A 6 4  

where A, = -4, Im[C?(2)] = -4 i~~C?(~) /U~( l ) ,  (A 7) 

and Im denotes 'imaginary part of'. 

A.3. Middle layer 
The vertical coordinate is scaled on h,  so that i = Z/kh,. Furthermore, for a 
logarithmic approach flow, i - &Z and kh, = ( C / K ) ~ .  

A.4. Upper layer 
The vertical coordinate is of order one. The vertical-velocity perturbations in the upper 
layer are, by construction, accounted for by the displaced coordinate system. Hence 

ud [e'"-"+O(khm)], w d  [O(kh,)], pd -ud* (A 9) 

Appendix B. Solutions for the flow over varying surface velocity 
In this Appendix we state the solutions for the Fourier transforms of the 

perturbations to a turbulent boundary layer over a varying tangential surface velocity. 
The unperturbed velocity profile and non-dimensionalization scheme are the same as 
Appendix A. 

The surface boundary conditions are 

u = u(zo), w = 0 on z = zo. (B 1) 

B. 1. Inner-surface layer 

u - u(z,)[l + (S+(O)(v0)+ S2+(')(v0) + P+@)(v0)) In (v/1;1,) + O(P)] eiX, 

In the ISL the vertical coordinate scales on z, so that 17 = Z/kz,. 

( B  2a) 

(B 2 4  

(B 2 4  

(B 2 4  

w - u(z,)[O(&e-"?] eiX, 

7 - u(zO)(2/U(l)) [ + ( O ) ( q 0 )  + 6+(')(z0) + Sz+(z)(vo) + O(P)] eiX, 
p - - u(zo) U(1) [Sz&(z) + O(P)] eiX. 
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P) = - 1, P) = In ( z m / z o )  -:(in + 4y), 

r3,) = 2iK,/U4(1). 
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With 

B.2. Shear-stress layer 
As usual in the SSL, 5 = Z / k l .  

u - u(zo) [62K0(2 d(i@) 
+82[G(2) +2(ln 5-2) 5c?Ku/a[- KO In 5+ A, K,,-9( 1/13] + O(S3)] eiX, (B 5a)  

w - U(Zo)  [ - 6, 2K2[ 1 + 25 aKo/ayl + O($)] eiX, 

7 - 4 z o )  (2/ U(1)) [25 aK"/a5 

p - - u(zo) U ( 1 ) [ 6 2 ~ ( 2 )  + O(S3)] ei-', 

(B 56)  

+ 4(2 - In 5 + A,)  5 aKo/ag + (2i5( In 5 - 2) - 1) KO - F'] + O(s")] eiX, (B 5 c) 

(B 5 4  

where A, = -2[3 + In ( z , / z , ) -q( ix  +4y)]. (B 6) 
@(l/LJ is the particular integral of 

(a/ao((5ali,/c?<)-iilid = l/c, 
which cannot be solved exactly, but there are the approximate results 

9 - i ln25+21n5+ l+O(<ln21J as 5 b0 
9 - - l/i[+ O(l/C') as 5-  GO. 

B.3. Middle layer 
In the middle layer we scale i = Z/kh,,, and U means U(h,P) 

u - u(zo)S2-[- kh, 1 iU(1) 2K2 U + kh, rf(2' - '("[1+ U U U ' f $ h ] + O ( k 2 h ' , ) ] e i X ,  

U-kh,  iG(2)U(l) U 

p - - u(zo) 6 2 [ ~ ( 2 ) U ( I )  + O(kh,)] eiX. 

B.4. Upper layer 
The vertical coordinate 2 is of order one. Then 

2iK2 2K2 
e-z + O(kh,)] eiX, w - ~ ( z , )  8' [ --e-" + O(kh,) 

W l )  
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